Introduction

Professional quality of life (ProQOL) is the level of satisfaction people have with their working conditions and one of the vital concerns centered on the wellbeing of professionals who are providing healthcare services (Stamm, 2010) [29]. A professional’s work environment and characteristics are complex concepts that could involve exposure to primary trauma (trauma resulting from personal experience) or secondary trauma (trauma based on others) (Severn et al., 2012; Stamm, 2010) [25, 29]. ProQOL is associated with both positive and negative aspects of their assigned role at their workplace and is influenced by the individual’s demographics, workplace environment, and characteristics (Stamm, 2010) [29]. Occupational stress and burnout are found to be very common among healthcare professionals and it is commonly researched among cardiologists, nurses, palliative care, etc. (Singh et al., 2017) [26]. Studies have been also conducted to assess the ProQOL among different medical health professions like nurses (Kim and Choi, 2012; Lauvrud et al., 2009; Potter et al., 2010) [13, 15, 19], doctors (Huggard and Dixon, 2011) [11], genetic counsellors, and audiologists (Ravi et al., 2016; Severn et al., 2012) [21, 25].

There are different validated and reliable scales available to assess ProQOL such as the ProQOL scale (Stamm, 2010) [29] or Maslach Burnout Inventory (Maslach et al., 1996) [16]. The two main domains of the ProQOL are compassion fatigue (CF) and compassion satisfaction (CS), which are both positive. CF is further divided into two categories: the first category deals with the frustration, exhaustion, anger, and depression that are typical of
burnout and the second category is related to secondary traumatic stress (STS) disorder, which is a negative emotion fueled by fear and work-related trauma (Stamm, 2010) [29]. As per research, those who assist someone who has had traumatic stressors run the risk of experiencing signs of posttraumatic stress disorder, depression, and exhaustion (Stamm, 2010) [29].

CS is the satisfaction that professionals derive from their ability to do their jobs well and from their enjoyment of doing so (Stamm, 2010) [29]. Job satisfaction is composed of numerous factors like age, hours per week, workplace conditions, support, remunerations, work recognition, and years of experience, peer support, and support from their supervisors (Reeter, 2012) [22]. Professionals with a lower degree of CS typically find happiness in activities other than their regular jobs or experience issues with their work profiles (Stamm, 2010) [29]. It may include the experience of helping combined with influencing factors like patient interaction, bonding with coworkers and overall management which leads to influence positively in their lives (Stamm, 2002) [27]. The ability and concern of the professional to participate in empathy (Stamm, 2010) [29], or to be able to experience the anguish of important persons in their own lives, patients, or occasionally coworkers, is lessened in CF (Figley, 2002) [7]. Burnout and STS comprise the CF category on the ProQOL scale (Stamm, 2010) [29]. Among working professionals, burnout is a phenomenon marked by emotional tiredness, depersonalization, and decreased personal satisfaction (Freudenberg, 1975; Maslach and Zimbardo, 1982; Stamm, 2010) [7, 17, 29]. It is a condition of physical, mental, and emotional tiredness brought on by deteriorating of an individual's capacity to cope with their working environment. It is a state of collective stress brought on by the difficulties of everyday living (Maslach and Zimbardo, 1982) [17].

Radiology is among one of the essential units in the healthcare system where the medical imaging technologist works under the supervision of radiologists with multiple machines like X-ray, computed tomography (CT), magnetic resonance imaging, ultrasound, etc. An increase in the demand for examinations often causing a higher level of psychological stress among radiologists and technologists as compared to other groups of occupational groups (Alavi et al., 2016) [31]; however, handling and working with patients to provide the best healthcare services requires a lot of patience, compassion, and professional skills. The potential cause of stress among these professional healthcare workers is their interaction with patients regarding their psychological, emotional, and social problems (Akroyd et al., 2002) [1]. Various existed studies have shown an increase in occupational stress, burnout among radiologists due to prolonged hours of medical image reporting, and work; hence, there is an increase in concern about the poor mental health (Graham et al., 2000) [10]. Studies also reported that there are frequent stressors in the department of radiology because of pressure to complete tasks/overwork, inadequate salaries, and inadequate holiday/vacation time (George and Ndlov, 2013) [9].

The COVID-19 epidemic was first identified in the Chinese population in Wuhan in December 2019, and the World Health Organization declared it to be a pandemic in March 2020 (World Health Organization, 2020). CT and before X-ray plays an important role in detecting the changes in the respiratory tract due to COVID-19 (Joob and Wiwanitkit, 2020) [12]. The whole world is facing the COVID-19 pandemic, so patients visit the radiology department for chest X-rays or CT scans at any time. Chest Xrays and CT scans of suspected COVID-19 patients are commonly requested by medical imaging technologists and radiologists and their full force (Akudjedu et al., 2020) [2]. Existing studies among medical imaging professionals reflect occupational stress due to workload, shortage of staff, and increase in the number of patients (Rutter and Lovegrove, 2008; Verrier and Harvey, 2010) [24, 33].

Materials and Methods

Present study was conducted after obtaining an ethical clearance from the institute. This study was conducted following declarations (World Medical Association). Informed consent was sought from each participant before their participation in this study. The objective of the study and their voluntary participation in this study were explained to the participants.

An online, cross-sectional, self-reported, and internet-based survey design was conducted in the year 2021 to assess the ProQOL during COVID-19 pandemic among medical imaging technologists and radiologists in India. The contact details of the medical imaging technologists and radiologists were obtained through the investigator's professional contacts using the principle of snowball sampling. The questionnaire was then mailed to 232 medical imaging technologists and radiologists using their e-mail identifications based on the below-mentioned eligibility criteria.

Inclusion Criteria

Medical imaging technologists and radiologists who are practicing in hospitals, clinics, and laboratory settings are eligible to participate.

Exclusion Criteria

1. Participants who are involved in academics only.
2. Participants who did not consent to participate in this study.

Data collection

Data were collected using Google form as per the Government of India's recommendation to maintain social distancing and minimize physical interaction. To ensure the completeness of the response and zero miss-outs, all of the questions on our Google form were single-choice answers. For reasons of secrecy, only the researchers had access to
the responses that had been gathered. The SPSS computer code as specified in the manual was followed (Stamm, 2010) [29].

Table 1: Demographic detail of study participants

<table>
<thead>
<tr>
<th>Variables</th>
<th>Number, n (n (%))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>81 (52.9)</td>
</tr>
<tr>
<td>Female</td>
<td>72 (47.1)</td>
</tr>
<tr>
<td>Occupation</td>
<td></td>
</tr>
<tr>
<td>Radiologist</td>
<td>37 (24.2)</td>
</tr>
<tr>
<td>Technologist</td>
<td>116 (75.8)</td>
</tr>
</tbody>
</table>

Study instrument

The survey questionnaire was divided into two sections: the first section asked about the study participants’ gender and occupation, whereas the second section asked about their ProQOL version 5 scores (Stamm, 2010) [29]. ProQOL is a validated and freely available tool developed by Stamm in 2009 (Stamm, 2009) [28] and later modified in 2010 (Stamm, 2010) [29]. ProQOL measures the negative and positive aspects of helping others. The ProQOL had subscales for CS, burnout, and STS. This scale consists of 30 questions, with 10 questions each on CS, burnout, and STS. The questions are scored on a Likert-type 5-point rating scale (1 – never, 2 – rarely, 3 – occasionally, 4 – often, and 5 – very often), and the scale is composed of 30 questions in total. Participants in the study had to mark their responses in accordance with their present employment status and their experiences during the previous 30 days, as per the ProQOL standards. Each subscale (CS, burnout, and STS) has 10 items with an average score of 50. The alpha scale reliability reported for CS is 0.88, burnout is 0.75, and STS is 0.81. For the burnout section of ProQOL, five items were scored in reverse order and were added during the analysis phase. Furthermore, raw scores for CS, burnout, and STS were converted to t scores with a mean and standard deviation of 50 ± 10. The cut-off scores were established using a manual by Stamm (2010) [29] to identify low, average, and high degrees of CS, burnout, and STS.

Statistical analysis

Descriptive statistics summarized the sociodemographic variables and subscales of ProQOL. Data were checked for its normality using the Kolmogorov-Smirnov test and internal consistency was assessed using Cronbach's alpha. A subgroup analysis among gender and occupation was performed for each subscale of ProQOL. Independent sample t-test (two-tailed) was used to compare the mean score between demographic variables and CS, burnout, and STS with a significance level of P < .05. Correlation between the three subscales was compared using Pearson’s product-moment correlation. Statistical analysis was performed using SPSS 16.0 (IBM SPSS Statistics, New York).

Results

The questionnaire was shared with nearly 230 medical imaging technologists and radiologists, of which 158 had responded (response rate: 68.6%). Five respondents did not consent to participate in this study; hence, responses from 153 participants were been recorded. The internal consistency of all three domains of the ProQOL was assessed using Cronbach’s alpha were CS (α= 0.84), burnout (α= 0.55), and STS (α= 0.72). Table 1 depicted the demographic details based on gender and occupation, whereas Table 2 reported the mean and standard deviation score with the range of the study participants.

In Table 3, most participants (70.6%) reported a moderate level of CS, whereas nearly one-fourth (28.1%) reported a high level of CS and only 1.3% reported low CS. In terms of burnout, more than onefourth (28.8%) of the participants reported a low level of burnout and nearly three-fourth participants (71.2%) reported a moderate level of burnout. A moderate level of STS was reported by most (69.3%) participants and nearly one-third (30.7%) of the participants reported a lower level of STS.

The mean scores of all three scales of ProQOL were compared with gender (male and female) and occupation (radiologist and technologist) using an independent sample t-test. There was no statistically significant difference present for any scale across gender and occupation. Subgroup Analysis Among Sociodemographic Variables

Compassion satisfaction, burnout, secondary traumatic scale, and gender Among males, nearly three-fourth (74.1%) of males reported a moderate level of CS, whereas less than one-fourth (23.5%) reported a higher level of CS and very few (2.5%) reported a low level of CS. Most (75.4%) males reported a moderate amount of burnout, whereas nearly one-fourth (24.7%) of males reported a low level of burnout. More than 70% of males reported a moderate amount of STS and almost 30% reported a lower level of STS. Among females, 66.7% or two in every three females reported a moderate level of CS; almost one-third (33.3%) reported a higher level of CS. Most (66.7%) females reported a moderate amount of burnout, whereas one-third (33.3%) reported a low level of burnout. Two-thirds (66.7%) of females reported a moderate amount of STS and 33.3% reported a low level of STS. Compassion satisfaction, burnout, secondary traumatic scale, and occupation Among radiologists, more than three-fourth (75.7%) radiologists reported a moderate level of CS, whereas nearly one-fourth (24.3%) reported a higher level of CS. Nearly 62% (62.2%) of radiologists reported a moderate amount of burnout, whereas 37.8% reported a lower level of burnout. Most (70.3%) radiologists reported a moderate amount of STS and nearly 30% of radiologists reported a low level of STS.

Among technologists, nearly 70% technologists reported a moderate level of CS, whereas nearly 30% reported a higher level of CS and only 1.7% reported a lower level of CS. Nearly three-fourth (74.1%) of technologists reported a

~ 82 ~
moderate amount of burnout, whereas nearly one-fourth (25.9%) reported a lower level of burnout. Most (69%) technologists reported a moderate amount of STS and less than one-third of 31% of technologists reported a lower level of STS (Table 4).

<table>
<thead>
<tr>
<th>Scale domain</th>
<th>Moderate</th>
<th>Low</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compassion Satisfaction</td>
<td>60 (74.1)</td>
<td>2 (2.5)</td>
</tr>
<tr>
<td>Burnout</td>
<td>48 (66.7)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Secondary Traumatic Scale</td>
<td>28 (75.7)</td>
<td>0 (0)</td>
</tr>
<tr>
<td></td>
<td>80 (69)</td>
<td>2 (1.7)</td>
</tr>
</tbody>
</table>

Correlation Between the Scale Domains

As provided in Table 5, the correlation between the three domains of the ProQOL scale (CS, burnout, and STS) was assessed using the product-moment correlation coefficient. Burnout was found to have a weakly positive connection with STS (r = 0.359) and a moderately negative correlation with CS (r = -0.405), both of which are statistically significant at the 0.01 level (two-tailed).

Discussion

Radiologists and medical imaging technologists play a key role in the field of clinical medicine. Medical imaging technologists work continuously and proximally with patients for the acquisition of images for long hours, so there are high chances of feeling stressed, burnout, and exhaustion (Cieszanowski et al., 2020; Kotian et al., 2020). A study conducted by Wisniewski and Shewan in 1987 discussed the professional's satisfaction and reported about their productivity, deliver high-quality work, and success comes when they are highly satisfied with their profession (Wisniewski and Shewan, 1987). They are more likely to be in their profession and encourage young individuals to join the same profession. ProQOL is directly associated with work satisfaction. Several factors like burnout and stress as experienced by these professionals influence them in a negative way which leads to a decline in quality work and high attrition. The working environment also affects the physical and psychological wellbeing of a professional (Theorell and Karasek, 1996).

The present study is a rare one focused on the wellbeing of technologists and radiologists during the COVID-19 pandemic. The present study aimed to assess three major components named CS, burnout, and STS among radiographers and radiologists in India. At present, the COVID-19 pandemic has created uncertainty and overload with changes in the department-working protocol leading to stress, fear, and exhaustion among radiology department workers (Elshami et al., 2021).

In this study, less than one-fourth (24%) of the participants reported a higher level of CS which is comparable to the study conducted among allied health professionals in New Zealand (Severn et al., 2012) and is lower as compared to the previous studies conducted among other healthcare professions (Ravi et al., 2016; Stamm, 2010). Most participants reported a moderate level of CS. Both males and females showed a moderate level of CS followed by a high CS. In this study, most participants reported a moderate level of burnout (71%) and STS (69.3%) as compared to the lower level of burnout (28.8%) and STS (30.7) which is higher from the studies conducted among allied health professionals in India (Ravi et al., 2016) and palliative care professionals in Spain and Brazil (Galiana et al., 2017).

Another study conducted in Pakistan reported the impact of the COVID-19 pandemic on the mental health of radiology professionals (Rana et al., 2020). It was seen that the number of patients needing care in the radiology department was increased and many hospitals recruited temporary workers to overcome the workload during the COVID-19 period. It is also interesting to know that none of the professionals reported a higher level of burnout and STS and very few participants reported lower levels of CS from their duties, so this allows them not to achieve a higher level of CF. Among gender, a moderate level of CS (males: 74% and females: 67%), burnout (males: 75% and females: 66%), and STS (males: 71% and females: 66%) is prevalent as compared to high and low level of CS, burnout, and STS. In terms of occupation, a moderate level of CS, burnout, and STS is common among radiologists and technologists. It is also evident among healthcare providers that in India had

<table>
<thead>
<tr>
<th>Scale domain</th>
<th>Correlation coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compassion Satisfaction</td>
<td>1</td>
</tr>
<tr>
<td>Burnout</td>
<td>0.405a</td>
</tr>
<tr>
<td>Secondary Traumatic Stress</td>
<td>0.132a</td>
</tr>
</tbody>
</table>

Table 5: Correlation between the scale domains using product moment correlation coefficient

(http://www.radiologypaper.com)
burnout. In addition, this study showed a slender positive association between burnout and STS. Our findings have been supported by the studies conducted by Ravi et al. among allied health professionals (Ravi et al., 2016) [21] and Ruiz-Fernandez et al. in 2021 [22] among healthcare professionals during the COVID-19 crisis in Spain (Ruiz-Fernandez et al., 2021) [23].

A meta-analysis of research studies conducted by Cieslak et al. (2014) [5] on professionals with exposure to trauma reported a strong association between burnout and STS. There is no correlation found between burnout and STS in this study which is contrary to the studies conducted among other professionals (Ravi et al., 2016; Severn et al., 2012) [22, 25].

Furthermore, the relationship between subdomains of the scale and gender and occupation was assessed. No significant difference has been seen among any subdomain scale and gender occupation and is comparable to the study conducted by Blood et al. in 2002 [9] among other allied health professionals (Blood et al., 2002) [10] and contrary to the study conducted by Ortega-Galan before COVID-19 in Spain (Ortega-Galan et al., 2020) [19]. This study emphasized the nature of ProQOL among medical imaging technologists and radiologists during COVID-19 pandemic working in India. The productivity and effectiveness of these professionals are directly impacted by their quality of life in their work.

Limitations of the Study
The study had low response and small sample size, so the result needs to be interpreted with great caution. Few other confounding factors like qualifications, experience (in years), and work setting are still not explored. This study also highlights the need to explore a study with a large sample size of professionals and wide geographical distribution which will further strengthen the implication of the study. Also, there is need of developing the evidence using quantitative and qualitative evaluations on the ProQOL among healthcare professionals.

Conclusion
This study attempted to assess the ProQOL among medical imaging professionals during the COVID-19 pandemic in India. The current area of ProQOL among healthcare workers needs to be explored because the quality of life plays a vital role in the work related outputs and provide quality service to the patients.

References
27. Stamm BH. Measuring compassion satisfaction as well as fatigue: developmental history of the compassion satisfaction and fatigue test; c2002.